Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chlorido[6-phenyl-4-(p-tolyl)-2,2'bipyridyl- $\kappa^2 N, N'$]platinum(II)

Hong Bo Lu,^a* Guo Qiang Lv,^a Jin Lin Zuo^b and Jia Xiang Yang^b

^aKey Laboratory of Special Display Technology and Academy of Opto-Electronic Technology, Hefei University of Technology, Ministry of Education, Hefei 230009, People's Republic of China, and ^bDeparment of Chemistry, Anhui University, Hefei 230039, People's Republic of China

Correspondence e-mail: bozhilu@mail.ustc.edu.cn

Received 17 June 2008; accepted 3 July 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.015 Å; R factor = 0.038; wR factor = 0.110; data-to-parameter ratio = 16.4.

The asymmetric unit of the title compound, $[Pt(C_{23}H_{17}N_2)Cl]$, contains two independent molecules with distinct dihedral angles between the central pyridyl and methylbenzene rings [7.77 (2) and 24.07 (2)°]. Short intermolecular distances [3.582 (6) and 3.600 (6) Å] between the outer pyridine and the PtNC₃ and PtN₂C₂ rings, respectively, indicate the existence of π - π interactions, which link the molecules into stacks along the *a* axis. The crystal structure is further stabilized by weak C-H··· π interactions.

Related literature

For related literature, see: Allen *et al.* (1987); Catalano *et al.* (2000); Kubicki *et al.* (2002).

Experimental

Crystal data

 $[Pt(C_{23}H_{17}N_2)Cl]$ $M_r = 551.92$ $Monoclinic, P2_1$ a = 7.379 (5) Åb = 18.066 (5) Åc = 14.222 (5) Å $\beta = 102.551 (5)°$ $V = 1850.6 (15) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 7.74 \text{ mm}^{-1}\) T = 298 (2) K 0.50 \times 0.30 \times 0.20 \text{ mm}\) $R_{\rm int} = 0.035$

14983 measured reflections

8028 independent reflections

6615 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker APEX area-dectector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
T_{min} = 0.113, T_{max} = 0.307
(expected range = 0.078–0.213)
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ H-atom parameters constrained $wR(F^2) = 0.110$ $\Delta \rho_{max} = 1.91 \text{ e Å}^{-3}$ S = 0.72 $\Delta \rho_{min} = -0.65 \text{ e Å}^{-3}$ 8028 reflectionsAbsolute structure: Flack (1983),489 parameterswith 3598 Friedel pairs1 restraintFlack parameter: 0.001 (11)

Table 1

Selected interatomic distances (Å).

Cg1, Cg2 and Cg3 are the centroids of the N4/C24–C28, Pt1/N1/C10/C11/C16 and Pt1/N1/N2/C5/C6 rings, respectively.

N3-Pt2	1.941 (8)	Pt1-C16	1.981 (9)
Pt2-C39	2.001 (11)	Pt1-N2	2.116 (8)
Pt2-N4	2.130 (9)	Pt1-Cl1	2.299 (3)
Pt2-Cl2	2.302 (3)	$Cg1 \cdot \cdot \cdot Cg2^{i}$	3.582 (6)
Pt1-N1	1.932 (7)	$Cg1 \cdots Cg3$	3.600 (6)

Symmetry codes: (i) 1 + x, y, z.

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg4 and Cg5 are the centroids of the Pt2/N3/C33/C34/C39 and C41–C45 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3\cdots Cg4^{ii}$ $C14-H14\cdots Cg5^{iii}$	0.93 0.93	2.87 2.71	3.650 (14) 3.445 (14)	142 136

Symmetry codes: (ii $-x + 1, y + \frac{1}{2}, -z$; (iii) $-x, y - \frac{1}{2}, -z$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank Professor W.-T. Yu of Shan Dong University for his kind assistance with the X-ray structure determination.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2424).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Catalano, V. J., Benett, B. L., Yson, R. L. & Noll, B. C. (2000). J. Am. Chem. Soc. 122, 10056–10057.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kubicki, M., Borowiak, T., Dutkiewicz, G., Souhassou, M., Jelsch, C. & Lecomte, C. (2002). J. Phys. Chem. B, 106, 3706–3714.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Acta Cryst. (2008). E64, m1013 [doi:10.1107/S1600536808020473]

Chlorido[6-phenyl-4-(*p*-tolyl)-2,2'-bipyridyl- $\kappa^2 N$,N']platinum(II)

H. B. Lu, G. Q. Lv, J. L. Zuo and J. X. Yang

Comment

Recently, the bonding interaction between the closed-shell metal atoms or ions is gaining increasing attention, and while there exist numerous examples of fluorophenyl and cyanate platinum(II) centers aggregating with s^2 ions such as Tl(I) or Pb(II) and d¹⁰ ions such as Au(I) or Ag(I)(Catalano *et al.*, 2000), there are few reports of similar association in the case of alkyl platinum(II) complexes. As a part of our ongoing investigation on platinum complexes, the title compound (I) has been prepared and its crystal structure is presented here.

There are two crystallographically independent molecules in the asymmetric unit of (I) (Fig. 1). Each molecule contains a Pt atom coordinated in a distorted square-planar configuration with two Pt-N, one Pt-C and one Pt-Cl bonds (Table 1). Bond lengths and angles in the two molecules are similar and in a argreement with the values reported in the literature (Allen *et al.*, 1987). The dihedral angles formed by the C17—C22 and C40—C45 benzene rings with N1/C6—C10 and N3/C29—C33 are 24.07 (2)°, 7.77 (2)°, respectively. The crystal packing of the structure exhibits π - π interactions proved by short intermolecular *Cg*1…*Cg*2 and *Cg*1…*Cg*3 distances of 3.582 (6) and 3.600 (6) Å, respectively; *Cg*1, *Cg*2 and *Cg*3 are centroids of N4/C24—C28, Pt1/N1/C10/C11/C16 and Pt1/N1/N2/C5/C6 rings, respectively (Table 1), which link the molecules into stacks along *a* axis. The crystal structure is further stabilized by the weak C—H… π interactions (Kubicki *et al.*, 2002; Table 2).

Experimental

For the preparation of 3,6-diimidazolyl-9-ethylcarbazole, A mixture of 4-(p-tolyl)-6-phenyl-2,2'-bipyridine (96.72 mg, 0.30 mmol) and K₂PtCl₄ (124.58 mg, 0.30 mmol) were heated at 363 K with CH₃CN (10 ml) as solvent for 18 h. The mixture was cooled to room temperature. Then it was filtered and concentrated, the re-crystallization from DMF produced red single crystals (38.90 mg, Yield 83.88%).

Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 - 0.96 Å and $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. The highest residual peak [1.91 e Å⁻³] is situated 0.11 Å at atom H30.

Figures

Fig. 1. : The content of asymmetric unit of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.

Chlorido[6-phenyl-4-(*p*-tolyl)-2,2'-bipyridyl-κ²N,N']platinum(II)

Z = 4
$F_{000} = 1056$
$D_{\rm x} = 1.981 { m Mg m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
$\mu = 7.74 \text{ mm}^{-1}$
T = 298 (2) K
Needle, red
$0.50 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Bruker APEX area-dectector diffractometer	8028 independent reflections
Radiation source: fine-focus sealed tube	6615 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.035$
T = 298(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -9 \rightarrow 9$
$T_{\min} = 0.113, \ T_{\max} = 0.307$	$k = -23 \rightarrow 23$
14983 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.038$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.110$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.72	$\Delta \rho_{max} = 1.91 \text{ e } \text{\AA}^{-3}$
8028 reflections	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$
489 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 3598 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.001 (11)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C19	0.7020 (18)	0.2281 (9)	0.3338 (8)	0.071 (3)
H19	0.7383	0.2734	0.3628	0.085*
N3	0.0093 (11)	0.0772 (4)	0.1479 (6)	0.0455 (18)
Pt2	-0.09764 (5)	-0.01160 (2)	0.08126 (2)	0.04713 (11)
Pt1	0.35781 (5)	0.143731 (18)	-0.25831 (2)	0.04136 (10)
C12	-0.2212 (5)	-0.11757 (18)	0.0028 (2)	0.0741 (8)
Cl1	0.2643 (5)	0.1428 (2)	-0.42342 (17)	0.0687 (7)
N1	0.4326 (9)	0.1481 (5)	-0.1195 (5)	0.0391 (14)
C44	0.2848 (18)	0.3505 (7)	0.4362 (7)	0.061 (3)
H44	0.2739	0.3580	0.4994	0.074*
C39	-0.0498 (14)	-0.0514 (6)	0.2157 (7)	0.052 (2)
C8	0.5388 (12)	0.1543 (6)	0.0788 (6)	0.044 (2)
C27	-0.0172 (14)	0.1830 (6)	-0.0774 (7)	0.048 (2)
H27	0.0347	0.2287	-0.0569	0.057*
C17	0.5989 (13)	0.1582 (5)	0.1879 (6)	0.044 (2)
C40	0.2257 (12)	0.2733 (5)	0.2945 (6)	0.0400 (19)
C33	0.0607 (13)	0.0765 (5)	0.2432 (7)	0.044 (2)
С9	0.4583 (13)	0.0905 (5)	0.0326 (7)	0.045 (2)
Н9	0.4410	0.0493	0.0689	0.054*
C45	0.2185 (16)	0.2857 (6)	0.3890 (7)	0.050 (2)
H45	0.1678	0.2496	0.4222	0.060*
C31	0.1507 (13)	0.2049 (5)	0.2432 (6)	0.041 (2)
C41	0.3111 (14)	0.3287 (6)	0.2493 (6)	0.047 (2)
H41	0.3226	0.3217	0.1861	0.056*
C12	0.2565 (16)	-0.0365 (6)	-0.0924 (9)	0.058 (3)
H12	0.2838	-0.0446	-0.0262	0.069*
C10	0.4033 (12)	0.0878 (5)	-0.0677 (7)	0.0404 (19)
C42	0.3768 (16)	0.3918 (6)	0.2959 (8)	0.056 (3)
H42	0.4299	0.4275	0.2633	0.067*
C43	0.3675 (18)	0.4046 (6)	0.3900 (8)	0.061 (3)
N4	-0.1077 (11)	0.0607 (5)	-0.0380 (6)	0.0500 (19)
C32	0.1347 (12)	0.1397 (6)	0.2932 (6)	0.0457 (19)
H32	0.1736	0.1384	0.3599	0.055*

C29	0.0292 (12)	0.1399 (7)	0.0952 (5)	0.0416 (18)
C25	-0.1501 (16)	0.0992 (8)	-0.2003 (8)	0.064 (3)
H25	-0.1893	0.0876	-0.2653	0.077*
N2	0.4760 (11)	0.2509 (5)	-0.2403 (5)	0.0440 (17)
C16	0.2736 (12)	0.0437 (5)	-0.2302 (7)	0.0411 (19)
C21	0.637 (2)	0.1009 (9)	0.3453 (9)	0.081 (4)
H21	0.6283	0.0592	0.3823	0.097*
C37	-0.0303 (18)	-0.1362 (7)	0.3487 (9)	0.066 (3)
H37	-0.0465	-0.1839	0.3699	0.079*
C38	-0.0821 (19)	-0.1205 (7)	0.2512 (8)	0.064 (3)
H38	-0.1395	-0.1570	0.2089	0.077*
C34	0.0295 (14)	0.0036 (5)	0.2848 (7)	0.046 (2)
C30	0.0987 (12)	0.2031 (5)	0.1427 (6)	0.0403 (19)
H30	0.1115	0.2455	0.1076	0.048*
C46	0.436 (2)	0.4749 (8)	0.4407 (10)	0.088 (4)
H46A	0.4440	0.5125	0.3941	0.131*
H46B	0.5562	0.4669	0.4814	0.131*
H46C	0.3510	0.4905	0.4793	0.131*
C11	0.3080 (12)	0.0276 (6)	-0.1299 (7)	0.044 (2)
C6	0.5122 (13)	0.2106 (5)	-0.0761 (7)	0.044 (2)
C18	0.6581 (17)	0.2241 (7)	0.2346 (8)	0.059 (3)
H18	0.6682	0.2663	0.1985	0.070*
C28	-0.0335 (13)	0.1287 (5)	-0.0092 (6)	0.045 (2)
C22	0.594 (2)	0.0974 (8)	0.2454 (8)	0.074 (4)
H22	0.5608	0.0519	0.2161	0.089*
C7	0.5620 (15)	0.2149 (6)	0.0231 (7)	0.047 (2)
H7	0.6112	0.2587	0.0526	0.057*
C24	-0.1648 (14)	0.0476 (7)	-0.1329 (7)	0.056 (3)
H24	-0.2161	0.0018	-0.1530	0.068*
C13	0.1620 (16)	-0.0893 (6)	-0.1555 (9)	0.062 (3)
H13	0.1259	-0.1337	-0.1320	0.074*
C4	0.6150 (16)	0.3362 (6)	-0.1195 (8)	0.057 (2)
H4	0.6526	0.3487	-0.0548	0.068*
C35	0.0742 (16)	-0.0126 (7)	0.3828 (8)	0.060 (2)
H35	0.1243	0.0238	0.4271	0.072*
C5	0.5346 (14)	0.2690 (5)	-0.1462 (7)	0.045 (2)
C14	0.1223 (16)	-0.0757 (7)	-0.2530 (10)	0.062 (3)
H14	0.0578	-0.1111	-0.2948	0.075*
C15	0.1765 (14)	-0.0102 (8)	-0.2903 (8)	0.056 (2)
H15	0.1472	-0.0024	-0.3566	0.067*
C2	0.5799 (19)	0.3664 (7)	-0.2857 (9)	0.068 (3)
H2	0.5929	0.3992	-0.3342	0.082*
C1	0.5009 (15)	0.2984 (7)	-0.3080 (8)	0.057 (3)
H1	0.4633	0.2850	-0.3724	0.069*
C26	-0.0770 (16)	0.1693 (7)	-0.1738 (7)	0.063 (3)
H26	-0.0694	0.2052	-0.2197	0.075*
C3	0.6396 (17)	0.3855 (7)	-0.1910 (9)	0.065 (3)
Н3	0.6962	0.4311	-0.1744	0.078*
C20	0.6946 (17)	0.1699 (9)	0.3895 (7)	0.071 (4)

C36	0.044 (2)	-0.0835 (7)	0.4141 (9)	0.069 (3)
H36	0.0738	-0.0948	0.4794	0.082*
C23	0.744 (2)	0.1739 (10)	0.5006 (9)	0.086 (4)
H23A	0.8454	0.1408	0.5249	0.129*
H23B	0.6383	0.1597	0.5254	0.129*
H23C	0.7798	0.2235	0.5205	0.129*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C19	0.077 (8)	0.085 (9)	0.050 (6)	-0.004 (7)	0.013 (6)	-0.018 (6)
N3	0.051 (4)	0.042 (4)	0.038 (4)	0.008 (4)	-0.003 (3)	-0.003 (3)
Pt2	0.0528 (2)	0.04704 (19)	0.04067 (19)	0.00263 (18)	0.00828 (15)	-0.00699 (16)
Pt1	0.04689 (18)	0.03779 (16)	0.03740 (17)	0.00176 (16)	0.00475 (13)	0.00092 (15)
Cl2	0.102 (2)	0.0613 (17)	0.0567 (16)	-0.0187 (17)	0.0123 (16)	-0.0182 (14)
Cl1	0.0953 (19)	0.0648 (14)	0.0393 (11)	-0.0045 (19)	-0.0002 (12)	0.0015 (14)
N1	0.045 (3)	0.035 (3)	0.037 (3)	0.009 (4)	0.008 (3)	-0.003 (4)
C44	0.084 (8)	0.059 (7)	0.037 (5)	-0.006 (6)	0.005 (5)	-0.004 (5)
C39	0.056 (6)	0.055 (6)	0.048 (5)	0.000 (5)	0.016 (5)	-0.009 (5)
C8	0.039 (4)	0.055 (6)	0.038 (4)	0.015 (4)	0.010 (3)	0.000 (4)
C27	0.055 (6)	0.047 (5)	0.039 (5)	0.012 (5)	0.009 (4)	0.003 (4)
C17	0.048 (5)	0.049 (6)	0.035 (4)	0.008 (4)	0.008 (3)	-0.005 (4)
C40	0.048 (5)	0.033 (4)	0.039 (4)	0.007 (4)	0.010 (4)	0.005 (4)
C33	0.044 (5)	0.041 (5)	0.043 (5)	0.005 (4)	0.005 (4)	0.002 (4)
С9	0.046 (5)	0.040 (5)	0.049 (5)	0.001 (4)	0.012 (4)	0.004 (4)
C45	0.073 (6)	0.040 (5)	0.035 (5)	0.010 (5)	0.007 (4)	0.003 (4)
C31	0.049 (5)	0.038 (5)	0.036 (4)	0.006 (4)	0.010 (4)	-0.001 (4)
C41	0.067 (6)	0.044 (5)	0.031 (4)	0.007 (5)	0.014 (4)	0.003 (4)
C12	0.068 (7)	0.049 (6)	0.056 (6)	0.001 (5)	0.012 (5)	0.010 (5)
C10	0.041 (5)	0.037 (4)	0.042 (5)	0.008 (4)	0.006 (4)	-0.003 (4)
C42	0.067 (6)	0.045 (5)	0.053 (6)	0.005 (5)	0.005 (5)	0.001 (5)
C43	0.080 (8)	0.047 (5)	0.044 (6)	0.003 (6)	-0.011 (5)	0.003 (5)
N4	0.044 (4)	0.058 (5)	0.041 (4)	0.001 (4)	-0.005 (3)	-0.006 (4)
C32	0.052 (5)	0.055 (5)	0.030 (4)	0.008 (5)	0.008 (3)	0.003 (5)
C29	0.048 (4)	0.051 (5)	0.027 (3)	0.010 (5)	0.009 (3)	0.005 (4)
C25	0.067 (7)	0.091 (9)	0.035 (5)	0.014 (7)	0.012 (5)	-0.010 (6)
N2	0.049 (4)	0.046 (4)	0.035 (4)	-0.005 (4)	0.003 (3)	0.005 (3)
C16	0.040 (4)	0.035 (4)	0.045 (5)	0.004 (4)	0.003 (4)	0.000 (4)
C21	0.119 (12)	0.073 (9)	0.048 (7)	-0.011 (8)	0.015 (7)	0.010 (6)
C37	0.082 (8)	0.055 (6)	0.060 (7)	-0.013 (6)	0.015 (6)	0.007 (5)
C38	0.077 (7)	0.053 (6)	0.056 (7)	-0.010 (6)	0.002 (6)	0.006 (5)
C34	0.056 (5)	0.035 (5)	0.047 (5)	0.010 (4)	0.015 (4)	0.000 (4)
C30	0.042 (5)	0.041 (5)	0.037 (4)	0.005 (4)	0.007 (4)	-0.001 (4)
C46	0.127 (12)	0.060 (8)	0.070 (8)	-0.016 (8)	0.010 (8)	-0.007 (6)
C11	0.033 (4)	0.044 (5)	0.052 (5)	0.002 (4)	0.005 (4)	-0.001 (4)
C6	0.041 (5)	0.043 (5)	0.045 (5)	0.000 (4)	0.006 (4)	0.000 (4)
C18	0.067 (7)	0.060 (6)	0.050 (6)	-0.005 (6)	0.015 (5)	0.007 (5)
C28	0.054 (5)	0.051 (6)	0.031 (4)	0.020 (4)	0.011 (4)	-0.002 (4)

C22	0.108 (10)	0.066 (8)	0.044 (6)	-0.007 (8)	0.007 (6)	-0.003 (5)
C7	0.060 (6)	0.041 (5)	0.041 (5)	0.001 (4)	0.010 (4)	-0.006 (4)
C24	0.050 (5)	0.072 (7)	0.042 (5)	-0.002 (5)	0.000 (4)	-0.016 (5)
C13	0.063 (7)	0.041 (5)	0.078 (8)	-0.009 (5)	0.005 (6)	-0.002 (5)
C4	0.076 (7)	0.041 (5)	0.053 (6)	0.000 (5)	0.014 (5)	0.001 (5)
C35	0.077 (7)	0.045 (5)	0.054 (5)	0.001 (6)	0.006 (5)	0.005 (5)
C5	0.052 (5)	0.042 (5)	0.040 (5)	0.002 (4)	0.008 (4)	-0.004 (4)
C14	0.058 (6)	0.047 (6)	0.082 (9)	-0.008 (5)	0.013 (6)	-0.016 (6)
C15	0.053 (5)	0.056 (6)	0.053 (5)	-0.010 (6)	0.000 (4)	-0.006 (6)
C2	0.084 (8)	0.060 (7)	0.064 (7)	-0.003 (7)	0.025 (6)	0.018 (6)
C1	0.061 (6)	0.055 (6)	0.054 (6)	-0.005 (5)	0.011 (5)	0.019 (5)
C26	0.066 (7)	0.081 (8)	0.039 (5)	0.017 (6)	0.006 (5)	0.003 (5)
C3	0.069 (7)	0.048 (6)	0.076 (8)	-0.017 (6)	0.011 (6)	-0.005 (6)
C20	0.069 (7)	0.111 (11)	0.030 (5)	0.006 (7)	0.007 (5)	0.006 (6)
C36	0.093 (8)	0.063 (7)	0.055 (7)	0.001 (7)	0.026 (6)	0.017 (6)
C23	0.105 (10)	0.105 (11)	0.048 (7)	0.000 (9)	0.016 (7)	-0.010(7)

Geometric parameters (Å, °)

C19—C20	1.32 (2)	С32—Н32	0.9300
C19—C18	1.379 (16)	C29—C30	1.369 (14)
С19—Н19	0.9300	C29—C28	1.470 (11)
N3—C33	1.325 (12)	C25—C24	1.358 (18)
N3—C29	1.384 (14)	C25—C26	1.397 (18)
N3—Pt2	1.941 (8)	С25—Н25	0.9300
Pt2C39	2.001 (11)	N2—C1	1.333 (13)
Pt2—N4	2.130 (9)	N2—C5	1.354 (12)
Pt2—Cl2	2.302 (3)	C16—C15	1.388 (14)
Pt1—N1	1.932 (7)	C16—C11	1.422 (14)
Pt1-C16	1.981 (9)	C21—C22	1.388 (17)
Pt1—N2	2.116 (8)	C21—C20	1.42 (2)
Pt1—Cl1	2.299 (3)	C21—H21	0.9300
N1—C6	1.357 (13)	C37—C36	1.360 (18)
N1—C10	1.358 (13)	C37—C38	1.384 (16)
C44—C45	1.385 (15)	С37—Н37	0.9300
C44—C43	1.390 (17)	С38—Н38	0.9300
C44—H44	0.9300	C34—C35	1.391 (14)
C39—C38	1.387 (17)	С30—Н30	0.9300
C39—C34	1.432 (14)	C46—H46A	0.9600
C8—C7	1.384 (14)	С46—Н46В	0.9600
C8—C9	1.394 (14)	C46—H46C	0.9600
C8—C17	1.520 (12)	C6—C7	1.381 (13)
C27—C26	1.368 (14)	C6—C5	1.486 (14)
C27—C28	1.403 (14)	C18—H18	0.9300
С27—Н27	0.9300	С22—Н22	0.9300
C17—C22	1.374 (16)	С7—Н7	0.9300
C17—C18	1.388 (16)	C24—H24	0.9300
C40—C45	1.375 (13)	C13—C14	1.375 (17)
C40—C41	1.410 (13)	С13—Н13	0.9300

C40—C31	1.480 (13)	C4—C5	1.368 (14)
C33—C32	1.393 (15)	C4—C3	1.393 (16)
C33—C34	1.482 (13)	C4—H4	0.9300
C9—C10	1.396 (13)	C35—C36	1.390 (17)
С9—Н9	0.9300	С35—Н35	0.9300
C45—H45	0.9300	C14—C15	1.391 (18)
C31—C32	1.395 (14)	C14—H14	0.9300
C31—C30	1.397 (13)	C15—H15	0.9300
C41—C42	1.354 (15)	C2—C3	1.367 (19)
C41—H41	0.9300	C2—C1	1.367 (18)
C12—C11	1.364 (15)	С2—Н2	0.9300
C12—C13	1.390 (16)	C1—H1	0.9300
C12—H12	0.9300	С26—Н26	0.9300
C10-C11	1.480 (14)	С3—Н3	0.9300
C42—C43	1.374 (16)	C20—C23	1.544 (15)
C42—H42	0.9300	С36—Н36	0.9300
C43—C46	1.493 (17)	С23—Н23А	0.9600
N4—C24	1.344 (13)	С23—Н23В	0.9600
N4—C28	1.370 (13)	С23—Н23С	0.9600
Cg1…Cg2 ⁱ	3.582 (6)	Cg1···Cg3	3.600 (6)
C20-C19-C18	122.7 (13)	C22—C21—C20	118.3 (12)
С20—С19—Н19	118.7	C22—C21—H21	120.9
С18—С19—Н19	118.7	C20-C21-H21	120.9
C33—N3—C29	121.4 (8)	C36—C37—C38	121.6 (11)
C33—N3—Pt2	119.2 (7)	С36—С37—Н37	119.2
C29—N3—Pt2	119.4 (6)	С38—С37—Н37	119.2
N3—Pt2—C39	82.1 (4)	C37—C38—C39	121.1 (11)
N3—Pt2—N4	79.8 (3)	С37—С38—Н38	119.4
C39—Pt2—N4	161.8 (4)	С39—С38—Н38	119.4
N3—Pt2—Cl2	179.3 (2)	C35—C34—C39	121.0 (9)
C39—Pt2—Cl2	97.7 (3)	C35—C34—C33	124.3 (9)
N4—Pt2—Cl2	100.5 (2)	C39—C34—C33	114.7 (9)
N1—Pt1—C16	82.2 (4)	C29—C30—C31	121.0 (9)
N1—Pt1—N2	79.6 (3)	С29—С30—Н30	119.5
C16—Pt1—N2	161.8 (3)	С31—С30—Н30	119.5
N1—Pt1—Cl1	177.9 (3)	C43—C46—H46A	109.5
C16—Pt1—Cl1	99.3 (3)	C43—C46—H46B	109.5
N2—Pt1—Cl1	98.9 (2)	H46A—C46—H46B	109.5
C6—N1—C10	121.6 (7)	C43—C46—H46C	109.5
C6—N1—Pt1	119.9 (6)	H46A—C46—H46C	109.5
C10—N1—Pt1	118.5 (6)	H46B—C46—H46C	109.5
C45—C44—C43	120.7 (10)	C12-C11-C16	124.1 (9)
C45—C44—H44	119.7	C12-C11-C10	121.8 (9)
C43—C44—H44	119.7	C16—C11—C10	114.1 (8)
C38—C39—C34	116.9 (10)	N1—C6—C7	120.4 (9)
C38—C39—Pt2	131.6 (8)	N1—C6—C5	112.7 (8)
C34—C39—Pt2	111.6 (8)	C7—C6—C5	126.9 (9)
С7—С8—С9	118.6 (8)	C19—C18—C17	120.9 (12)

C7 C9 C17	120.2 (0)	C10 C19 U19	110 (
C/=C8=C1/	120.2 (9)	C19	119.6
	121.3 (9)		119.6
C26—C27—C28	120.6 (11)	N4—C28—C27	120.5 (8)
С26—С27—Н27	119.7	N4—C28—C29	116.3 (9)
С28—С27—Н27	119.7	C27—C28—C29	123.2 (10)
C22—C17—C18	116.6 (9)	C17—C22—C21	122.8 (12)
C22—C17—C8	122.1 (9)	C17—C22—H22	118.6
C18—C17—C8	121.3 (9)	C21—C22—H22	118.6
C45—C40—C41	116.5 (9)	C6—C7—C8	120.0 (9)
C45—C40—C31	121.9 (9)	С6—С7—Н7	120.0
C41—C40—C31	121.6 (8)	С8—С7—Н7	120.0
N3—C33—C32	120.5 (9)	N4—C24—C25	122.1 (11)
N3—C33—C34	112.5 (8)	N4—C24—H24	118.9
C32—C33—C34	127.0 (9)	C25—C24—H24	118.9
C8—C9—C10	120.6 (9)	C14—C13—C12	119.7 (11)
С8—С9—Н9	119.7	C14—C13—H13	120.1
С10—С9—Н9	119.7	С12—С13—Н13	120.1
C40—C45—C44	121.7 (10)	C5—C4—C3	118.9 (10)
C40—C45—H45	119.1	С5—С4—Н4	120.6
C44—C45—H45	119.1	С3—С4—Н4	120.6
C32—C31—C30	117.8 (8)	C36—C35—C34	119.7 (11)
$C_{32} - C_{31} - C_{40}$	121.2 (8)	C36—C35—H35	120.2
$C_{30} - C_{31} - C_{40}$	120.9 (8)	C_{34} C_{35} H_{35}	120.2
C42 - C41 - C40	120.9 (0)	N2_C5_C4	120.2
$C_{42} = C_{41} = H_{41}$	110.3	N2-C5-C6	120.9(9)
C_{42} C_{41} H_{41}	119.5	112 - 25 - 20	113.7(8) 123.3(0)
$C_{40} - C_{41} - II_{41}$	119.5	$C_{4} = C_{5} = C_{6}$	123.3(9)
$C_{11} = C_{12} = C_{13}$	110.5 (11)	$C_{13} = C_{14} = C_{15}$	121.4 (10)
C12—C12—H12	120.9	C15 - C14 - H14	119.5
C13C12H12	120.9	C15C14H14	119.3
NI-C10-C9	118.8 (8)		120.9 (10)
NI-CI0-CII	112.1 (8)	С16—С15—Н15	119.5
C9—C10—C11	129.1 (9)	C14—C15—H15	119.5
C41—C42—C43	122.0 (11)	C3—C2—C1	119.1 (11)
C41—C42—H42	119.0	С3—С2—Н2	120.5
C43—C42—H42	119.0	C1—C2—H2	120.5
C42—C43—C44	117.5 (10)	N2	122.0 (11)
C42—C43—C46	122.1 (12)	N2—C1—H1	119.0
C44—C43—C46	120.4 (11)	С2—С1—Н1	119.0
C24—N4—C28	118.4 (9)	C27—C26—C25	117.1 (11)
C24—N4—Pt2	129.8 (8)	С27—С26—Н26	121.4
C28—N4—Pt2	111.6 (6)	C25—C26—H26	121.4
C33—C32—C31	120.0 (8)	C2—C3—C4	119.5 (11)
С33—С32—Н32	120.0	С2—С3—Н3	120.3
C31—C32—H32	120.0	С4—С3—Н3	120.3
C30—C29—N3	119.2 (7)	C19—C20—C21	118.7 (10)
C30—C29—C28	128.0 (10)	C19—C20—C23	122.9 (13)
N3—C29—C28	112.8 (9)	C21—C20—C23	118.4 (12)
C24—C25—C26	121.1 (10)	C37—C36—C35	119.6 (11)
C24—C25—H25	119.4	С37—С36—Н36	120.2

С26—С25—Н25	119.4		С35—С36—Н36		120.2
C1—N2—C5	119.6 (9)		С20—С23—Н23А		109.5
C1—N2—Pt1	128.3 (7)		С20—С23—Н23В		109.5
C5—N2—Pt1	112.1 (6)		H23A—C23—H23B		109.5
C15-C16-C11	115.5 (9)		С20—С23—Н23С		109.5
C15-C16-Pt1	131.2 (8)		H23A—C23—H23C		109.5
C11-C16-Pt1	113.1 (7)		H23B—C23—H23C		109.5
Symmetry codes: (i) $x+1$, y , z .					
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C3—H3···Cg4 ⁱⁱ		0.93	2.87	3.650 (14)	142
C14—H14····Cg5 ⁱⁱⁱ		0.93	2.71	3.445 (14)	136

Symmetry codes: (ii) -x+1, y+1/2, -z; (iii) -x, y-1/2, -z.

